

Two's Complement

- This is the name given to binary system we use to represent negative numbers.
o The first bit used in two's complement is -128 instead of 128 we usually have:
$\begin{array}{llllllll}-128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$

Note!!

- If you are given a two's complement
 question which begins with a ' 1 ' then your answer will be negative
- If you are given two's complement question which begins with a '0' then your answer will be positive

Negative Numbers

o For example the number -45 us represented by 11010011 In two's complement

$$
\begin{aligned}
& \begin{array}{cccccccc}
-128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
=-128+64+16+2+1=-45
\end{array}
\end{aligned}
$$

Negative Numbers

o For example the number -81 us represented by 10101111 In two's complement

$$
\begin{aligned}
& \begin{array}{cccccccc}
-128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
=-128+32+8+4+2+1=-81
\end{array}
\end{aligned}
$$

Floating Point Notation

o This is the name given to the binary system used to represent numbers with a decimal point.

- For example :
- 33.9
- 0.0056
- 1289.1285

Mantissa \& Exponent

- A floating point number is made up of:
- Mantissa : the 'fraction' part
- Exponent : the 'power of' part
o For example:
$100111.10100=10011110100 \times 20110$

Mantissa
Exponent

Example

11001110.1101

$110011101101 \times 2^{8}$

$110011101101 \times 2^{1000}$

Step 1 - count out how many steps until the decimal point is out of the number

Step 2 - write out your number without the decimal point $x 2$ to the power of how many steps it took to remove the decimal point

Step 3 - rewrite the power of as a binary number as the computer does not understand an ' 8 '

Floating Point Notation

- The accuracy of a floating point number is increased by allocating more bits to the mantissa.
- The range of numbers that can be stored is increased by allocating more bits to the exponent.

Examples

o A floating point number which uses 16 bits for the mantissa and 8 bits for the exponent is less accurate and stores a smaller range of numbers than a floating point number that uses 24 bits for the mantissa and 16 bits for the exponent.

Question

- Jonathan needs to store the floating point numbers accurately in his program.

Which option should he use and why?

Option 1 16-bit exponent
16-bit mantissa

Option 2 8-bit exponent
24-bit mantissa

