

Two's Complement Negative Numbers Floating Point Notation Mantissa & Exponent

NATIONAL 5 BINARY

Two's Complement

This is the name given to binary system we use to represent negative numbers.

 The first bit used in two's complement is -128 instead of 128 we usually have:

-128 64 32 16 8 4 2 1

Note!!

 If you are given a two's complement question which begins with a '1' then your answer will be negative

 If you are given two's complement question which begins with a '0' then your answer will be positive

Negative Numbers

For example the number -45 us represented by 11010011 In two's complement

-128643216842111010011

= -128 + 64 + 16 + 2 + 1 = -45

Negative Numbers

For example the number -81 us represented by 10101111 In two's complement

 -128
 64
 32
 16
 8
 4
 2
 1

 1
 0
 1
 0
 1
 1
 1
 1
 1

= -128 + 32 + 8 + 4 + 2 + 1 = -81

Floating Point Notation

 This is the name given to the binary system used to represent numbers with a decimal point.

- For example :
 - 33.9
 - 0.0056
 - 1289.1285

Mantissa & Exponent

A floating point number is made up of:

- Mantissa : the 'fraction' part
- Exponent : the 'power of' part
- For example:

$100111.10100 = 10011110100 \times 2^{0110}$

Exponent

<u>Example</u>

11001110.1101

87654321

110011101101 x 2 ⁸

110011101101 x 2^{1000}

Step 1 – count out how many steps until the decimal point is out of the number

Step 2 – write out your number without the decimal point x 2 to the power of how many steps it took to remove the decimal point

Step 3 – rewrite the power of as a binary number as the computer does not understand an '8'

Floating Point Notation

The accuracy of a floating point number is increased by allocating more bits to the mantissa.

 The range of numbers that can be stored is increased by allocating more bits to the exponent.

Examples

A floating point number which uses 16 bits for the mantissa and 8 bits for the exponent is less accurate and stores a smaller range of numbers than a floating point number that uses 24 bits for the mantissa and 16 bits for the exponent.

Question

 Jonathan needs to store the floating point numbers accurately in his program.

Which option should he use and why?

Option 1 16-bit exponent 16-bit mantissa

Option 2 8-bit exponent

24-bit mantissa